ASYMMETRIC TEMPERATURE FIELD OF AN UNBOUNDED
CYLINDER WITH A MOVING HEATING LINE

Yu. A. Shukeilo UDC 536.21

The temperature distribution in an unbounded hollow cylinder, a portion of whose inner sur-
face is asymmetrically heated,is obtained under the assumption that the heating line moves
at a certain speed toward the cylinder axis.

Problems involving the determination of the temperature field in axisymmetrically heated cylinders,
where the heating line moves at a certain speed, have been examined by numerous investigators [1-4]. The
stresses arising in the cylinder material under the action of the temperature were obtained likewise in [1,
3]. Not less important is the problem of determining the temperature field and the corresponding stress
field in cylinders, only a portion of whose lateral surface is subjected to asymmetric heating, since it is
heating of this type that is frequently observed in practice in the operation of power systems [5, 6.

In the present paper, the temperature distribution in a hollow infinite cylinder is obtained under the
following assumptions: the cylinder is not heated in the initial state; at a moment of time t, a portion of the
inner surface defined by the coordinates z < 0 and ¥ < ¢ < (2r —7) is heated to a temperature T, while
the portion defined by the coordinates (21 — V) = ¢ = v remains unheated; the heating line moves at a cer-
tain speed V in the positive direction of the z axis (Fig. 1).

Having expressed the temperature at the surface r = @ in the form of a Fourier series where the n-th
coefficient is denoted by fj, the solution of the heat equation:
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is sought in the form
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We abstain from examining the value n = 0, since it refers to an axisymmetric temperature distribution,
which has been thoroughly analyzed in [1-3].

Let us introduce the dimensionless coordinates
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For determining the coefficients of series (2), we obtain on the basis of equality (1) the following differential
equation:
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with the boundary and initial conditions

Tn(p’ g’ 0) =0’ ﬁ<p<1,
T8 & v =fp(f—ur)y
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fn@—uv) 0 t>um.

In order to obtain the form of function T}, we apply to Eq. (3) the apparatus of integral transforms,
namely: Fourier transforms with respect to the { coordinate, and Laplace transforms with respect to the
7 coordinate. As a result, we obtain an equation and the corresponding boundary conditions for determining
a function of only the p coordinate.

By applying to function T, Fourier transforms with respect to ¢
1 ¢ . -
— [ mewenar=T.,
1 2n K

we obtain for Eq. (3):

0°T, n 1 o1, T, P, = oT, . (5)
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For the transforms, the boundary and initial conditions (4) take the form
Ta(p, b, 0)=0, p<p<1;

T,

dp

+ KT, =0, p=1; (6)
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Here, as in [7], it is assumed that

1 1
8-(1) = 2 () + omix

Now we apply Laplace transforms to Eq. (56). This equation then takes the form
&T, 1 dT, T, . ,

= (PPt a)T, =0, (7)
dp? p dp p? FHats

where

T = j T, exp(—at)dr.
0

The boundary conditions (6) reduce to the form:

aTn | pTh—0, p=1;
dp
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Equation (7) is the Bessel equation. Its solution is
Tn = Al () + BK.(80), &=V +a.

We determine the coefficients A and B with the aid of the boundary conditions (8). Then

- _ o= DE) 5.(p) .
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where
D (xy) = 1, (xy) [xK], (%) + K, ()] — Ky (x9) (%]}, (x) ++ K1, (x)).

By using the inversion theorem proposed in [8], we obtain inverse Laplace transforms
ctio
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The integrand is an analytic function in any finite portion of the plane, with the exception of the points

ag = ipuanda, = —(0f + p%),
where wy are the roots of equation
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Then, according to Cauchy's theorem of residues [8], we have

D(Ep) _exp(a7) J
D(EB) a—ipt Juwq,

After some necessary calculations, we obtain
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The inverse transform of function Tpx(p, ¢, T) is obtained by inversion of the Fourier transforms
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Making use of the well-known equality [7]
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The integrand in (12) is an analytic function everywhere in any finite portion of the plane,with the

exception of the poles
po =0, p, = ig,andp_, =iq_,,
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Fig. 1. Schematic drawing of the problem of the
temperature field in an unbounded cylinder with a
moving heating line.
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In the evaluation of the integral (12), one must consider two cases

DNE—ut>0, 2){—ur<<O.

where

For function Ty, we obtain, respectively,
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In the evaluation of the integral (13), the fraction in the integrand can be expressed in the form of a sum
of common fractions [2], then

, \ 1
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ol +4%,
The roots wy of Eq. (10) can be determined by a method proposed in [9].

NOTATION

are the cylindrical coordinates;

is the temperature of a portion of the inner surface of the cylinder;
is the radius of outer surface of cylinder;

is the radius of inner surface of cylinder;

is the speed of heating line;

is the coefficient of thermal diffusivity;

is the time;

is the Heisenberg delta-function;

is the Dirac delta-function;

is the heat—~transfer coefficient; .

In, K are the Bessel functions of an imaginary variable with subscript n;
are the parameters.
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